Wat was die Britse weergawe van die Enigma -masjien?

Wat was die Britse weergawe van die Enigma -masjien?



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Wat het die Britte gebruik om die boodskappe te enkripteer terwyl die Duitsers die Enigma -masjien gebruik het, en was dit ooit gebreek?


Die Britte het 'n soortgelyke masjien gehad, bekend as die Typex -masjien. Die Wikipedia -artikel is baie diep, en veral die gedeelte oor 'Veiligheid en gebruik' wat van belang is, sê:

Alhoewel 'n Britse toets -kriptanalitiese aanval aansienlike vordering gemaak het, was die resultate nie so beduidend as teenoor die Enigma nie, as gevolg van die verhoogde kompleksiteit van die stelsel en die lae verkeersvlakke.

Die Crypto Museum het 'n lys van Britse chiffermasjiene, hoewel ek moet erken dat ek net van die Typex gehoor het, en ek weet nie van watter datum die ander is nie.


Alan Turing Biografie: Computer Pioneer, Gay Icon

Alan Turing was 'n Britse wetenskaplike en 'n baanbreker in rekenaarwetenskap. Tydens die Tweede Wêreldoorlog het hy 'n masjien ontwikkel wat die Duitse Enigma -kode help breek het. Hy het ook die grondslag gelê vir moderne rekenaarkunde en teoretiseer oor kunsmatige intelligensie.

'N Openlik gay man gedurende 'n tyd toe homoseksuele dade in Brittanje onwettig was, het Turing selfmoord gepleeg nadat hy skuldig bevind is aan' growwe onsedelikheid 'en tot 'n prosedure veroordeel is wat' chemiese kastrasie 'genoem word. Hy het sedertdien 'n gemartelde held van die gay gemeenskap geword. Aan die einde van 2013, byna 60 jaar na sy dood, het koningin Elizabeth II hom formeel begenadig.


Bletchley Park

Ons redakteurs gaan na wat u ingedien het, en bepaal of hulle die artikel moet hersien.

Bletchley Park, Britse kriptologiese onderneming in werking tydens die Tweede Wêreldoorlog. Bletchley Park was die plek waar Alan Turing en ander agente van die Ultra -intelligensieprojek die vyand se geheime boodskappe gedekodeer het, veral die wat met die Duitse chiffermasjiene Enigma en Tunny geïnkripteer is. Kenners het voorgestel dat die kodebrekers van Bletchley Park die oorlog met tot twee jaar kon verkort het.

Die Bletchley Park -terrein in Buckinghamshire (nou in Milton Keynes), Engeland, was ongeveer 80 kilometer noordwes van Londen, gerieflik geleë naby 'n spoorlyn wat beide Oxford en Cambridge universiteite bedien het. Die eiendom bestaan ​​uit 'n Victoriaanse herehuis en 'n terrein van 23 hektaar. Die Britse regering verkry dit in 1938 en maak dit 'n stasie van die Government Code en Cypher School (GC & ampCS), aangewys as stasie X. Aan die begin van die oorlog in 1939 het die stasie slegs 200 werkers gehad, maar teen einde 1944 het dit 'n personeel van byna 9 000, wat daagliks in drie skofte werk. Kenners in die oplos van blokkiesraaisels en skaak was een van die persone wat gehuur is. Ongeveer driekwart van die werkers was vroue.

Om hul werk te vergemaklik, het die personeel toerusting ontwerp en gebou, veral die lywige elektromeganiese masjiene wat die kode breek, Bomme genoem. Later, in Januarie 1944, kom Colossus, 'n vroeë elektroniese rekenaar met 1600 vakuumbuise. Die herehuis was te klein om alles en almal te akkommodeer, dus moes tientalle buitegeboue van hout gebou word. Hierdie geboue is hutte genoem, hoewel sommige aansienlik was. Turing werk in Hut 8 toe hy en sy medewerkers die Enigma opgelos het. Ander nuwe geboue is uit sementblokke gebou en met letters geïdentifiseer, soos blok B.

Ondanks die belangrike belang van die werk, het Bletchley Park steeds probleme ondervind om genoeg hulpbronne te kry. Daarom het Turing en ander in 1941 direk 'n brief aan premier Winston Churchill geskryf, wat sy stafhoof onmiddellik beveel het om "seker te maak dat hulle alles wat hulle wil, op uiterste prioriteit is en aan my rapporteer dat dit gedoen is."

Die operasies is uitgevoer onder 'n opdrag van streng geheimhouding wat selfs nadat die oorlog geëindig het, nie opgehef is nie. Eers in 1974, toe Frederick William Winterbotham toestemming gekry het om sy memoires te publiseer, Die Ultra Geheim, het die wêreld begin leer wat in Bletchley Park bereik is? Die eiendom word nou as 'n museum onderhou.


Hoe 'n Enigma -masjien werk

'N Enigma -masjien bestaan ​​uit verskeie dele, waaronder 'n sleutelbord, 'n lampbord, rotors en interne elektroniese stroombane. Sommige masjiene, soos die wat deur die weermag gebruik word, het ekstra funksies, soos 'n insteekbord.

Enigma Machine by die Imperial War Museum, Londen. [3]

Gekodeerde boodskappe sou 'n spesifieke roer van letters op 'n gegewe dag wees, wat sou lei tot 'n begryplike sin wanneer dit ongedaan gemaak word.

As 'n toets op die sleutelbord ingedruk word, beweeg een of meer rotors om 'n nuwe rotorkonfigurasie te vorm wat die een letter as die ander sal kodeer. Stroom vloei deur die masjien en steek een vertoonlamp op die lampbord aan, wat die uitsetletter aandui. As die "K" -toets ingedruk word en die Enigma -masjien die letter as 'n 'P' kodeer, sal die 'P' op die lampbord brand.

Elke maand het Enigma -operateurs kodeboeke ontvang wat spesifiseer watter instellings die masjien elke dag sou gebruik. Elke oggend sou die kode verander.

Byvoorbeeld, op 'n dag kan die kodeboek die instellings bevat wat in die dag-sleutel hieronder beskryf word:

'N Steekbord is soortgelyk aan 'n outydse telefoonskakelbord met tien drade, elke draad het twee ente wat in 'n gleuf ingeprop kan word. Elke propdraad kan twee letters as 'n paar verbind (deur die een kant van die draad aan die slot van een letter te koppel en die ander kant aan 'n ander letter). Die twee letters in 'n paar sal omruil, dus as "A" gekoppel is aan "Z", word "A" "Z" en "Z" word "A." Dit bied 'n ekstra skarrel vir die weermag.

Om hierdie dagsleutel te implementeer, moet u eers die letters A en L omruil deur dit op die insteekbord te koppel, P en R om te ruil deur dit op die insteekbord te koppel, en dan dieselfde met die ander letterpare hierbo. In wese word 'n een kant van 'n kabel in die "A" -gleuf ingeprop en die ander kant in die L -gleuf. Voordat daar nog meer deur die rotors geskarrel word, voeg dit 'n eerste laag skarrel by waar die letters wat deur die kabel verbind word, as mekaar gekodeer word. As ek byvoorbeeld die boodskap APPLE sou enkodeer nadat ek slegs die "A" met die "L" verbind het, sou dit as LPPAE gekodeer word.

Die insteekbord is aan die voorkant van 'n Enigma -masjien, onder die sleutels, geplaas. [4]

Die Enigma -masjiene het verskillende rotors, elke rotor het 'n ander koderingskema. Om 'n boodskap te kodeer, het die Enigma -masjiene drie rotors op 'n slag geneem, een in elk van die drie gleuwe. Elke verskillende kombinasie van rotors sou 'n ander koderingskema lewer. Let wel: die meeste militêre Enigma -masjiene het drie rotorgleuwe, hoewel sommige meer gehad het.

Om die konfigurasie hierbo te bereik, plaas rotor #2 in die eerste gleuf van die raaisel, rotor #3 in die tweede gleuf en rotor #1 in die derde gleuf.

Op elke rotor is daar 'n alfabet langs die rand, sodat die operateur 'n spesifieke rigting kan instel. Vir hierdie voorbeeld sal die operateur die rotor in gleuf 1 draai sodat D vertoon word, die tweede gleuf draai sodat K vertoon word, en die derde gleuf draai sodat P vertoon word.

[5]

Enigma -wiele binne alfabetringe in posisie in 'n Enigma -scrambler [6]


Die geskiedenis van kolossusrekenaar

Die Tweede Wêreldoorlog belemmer die vordering vir rekenaaruitvinders soos Atanasoff en Zuse, maar het die teenoorgestelde uitwerking gehad op die eerste Britse stappe in die rigting van die skepping van elektroniese rekenaar. Tydens die oorlog het die departement van kommunikasie van die Britse buitelandse kantoor masjiene geskep wat elektroniese stroombane gebruik het om die Britte te help met die dekodering van onderskepte Duitse radioboodskappe, gekodeer met spesiale masjiene. Die Engelse elektroniese rekenaars is geskep deur 'n groep mense, met die hoofrol van die beroemde Engelse wiskundige Maxwell Newman (biografie) (linker boonste foto) en die ingenieur Thomas Flowers (biografie). Baie ander het belangrike rolle gespeel, waaronder Alan Turing en C. E. Wynn-Williams.

Die onderskep en dekodeer van Duitse boodskappe was 'n belangrike faktor in die geallieerde oorwinning, 'n feit wat tot onlangs geheim gehou is. Die werk is in groot geheimhouding uitgevoer op Regeringskode en Chifferskool in Bletchley Park, GC & ampCS, (sien die nabygeleë foto), 'n Victoriaanse landgoed, ongeveer 80 km noord van Londen. Volgens die historikus Harry Hinsley was die werk van kripto -ontleders in GC & ampCS van groot belang vir die geallieerde oorwinning en het die oorlogstyd met ongeveer twee jaar verkort.

Die Duitse leër het begin gebruik Enigma ciffermasjiene (sien die nabygeleë foto) vir die kodering van militêre boodskappe in 1925. Anders as wat die Duitsers glo, het die Enigma masjien was nie veilig nie. In 1928 verkry die Pole die kennis oor die Duitse weermag Enigma deur een in die doeane te onderskep, na die Duitse ambassade in Warskou gestuur en dit ondersoek. 'N Hele reeks Enigma -masjiene is by die fabriek in Warskou vervaardig. 'N Groep briljante wiskundestudente aan die Poznan -universiteit (Rejewski, Rozycki en Zygalski) is gewerf om in die kriptologiese afdeling van die Poolse generale staf te werk. In 1932 het hulle die Duitse Enigma -seine ontsyfer. Om dekripsie te vergemaklik, het Rejewski 'n elektromeganiese programmeerbare masjien ontwerp wat hy gebel het Bomba (Pools vir bom) weens die bomagtige tikgeluid wat dit gemaak het. In Julie 1939 gee die Pole die Franse en die Britse replika's van Pools gemaakte Enigmas saam met die tekeninge en inligting oor die Enigma, Bomba en die dekripsie -inligting. Twee wiskundiges wat by GC & ampCS werk, Alan Turing en Gordon Welchman, het 'n verbeterde weergawe van die Bom masjien en meer as 200 van die Bomme is gebou deur die Britse tabletmasjien maatskappy.

Die Britte was baie entoesiasties oor die moontlikheid om al die Duitse militêre korrespondensie te ontsyfer deur middel van die Bomme, aan die begin van 1940 het die onderskeppers skielik Duitse boodskappe begin vang, gekodeer met 'n ander masjien, wat onmoontlik was om te ontsyfer. Wat het gebeur?

Aan die einde van die dertigerjare het die Duitse leër se hoë kommando die kompanie gevra C. Lorenz AG om vir hulle 'n hoë -sekuriteitsmasjien vir teleprinter te vervaardig sodat hulle in volle geheimheid per radio kan kommunikeer. Die Lorenz AG ontwerp die SZ40- en SZ42 -chiffermasjiene (sien die foto in die omgewing), gebaseer op die additiewe metode vir die kodering van teleprinterboodskappe wat in 1918 deur die Gilbert S. Vernam, Brooklyn, New York, uitgevind is (sien die patent van Vernam). Sedert die 1940 die Enigma-masjien oor die algemeen deur veldeenhede gebruik is, is die Lorenz-masjien gebruik vir kommunikasie op hoë vlak (insluitend Hitler se bestellings) wat die swaar masjien, teletikmasjien en gepaardgaande vaste stroombane kon ondersteun. Die Vernam -stelsel versleut die boodskapteks deur, karakter vir karakter, 'n stel karakters wat dit verduister, daarby te voeg en sodoende die versleutelde teks wat na die bedoelde ontvanger oorgedra is, te produseer. Die eenvoud van die Vernam -stelsel was dat as die verduisterende karakters op 'n baie spesiale manier bygevoeg word (bekend as module 2 byvoeging), dan presies dieselfde verduisterende karakters wat op dieselfde manier by die ontvangde versleutelde boodskap gevoeg is, die verduisterende karakters uitgevee en die oorspronklike boodskap teruggevind. Vernam het voorgestel dat die verduisterende karakters heeltemal willekeurig moet wees en vooraf op papierband geplak moet word om karakter vir karakter in sinchronisasie met die invoerboodskapkarakters te verteer. So 'n koderingstelsel wat suiwer ewekansige karakters gebruik, is onbreekbaar.

Die moeilikheid was om in 'n warm oorlogsituasie seker te maak dat dieselfde willekeurige karakterbande aan elke kant van 'n kommunikasieverbinding beskikbaar was en dat hulle albei op dieselfde beginposisie was. Die Lorenz Company het besluit dat dit operasioneel makliker sou wees om 'n masjien te bou om die verduisterende karaktervolgorde te genereer. Omdat dit 'n masjien was, kon dit nie 'n heeltemal willekeurige reeks karakters genereer nie. Dit genereer wat bekend staan ​​as 'n pseudo ewekansig volgorde. Ongelukkig was dit meer vir die Duitse leër pseudo as ewekansig en dit is hoe dit gebreek is. Die wonderlike ding van SZ -masjiene (in teenstelling met die Poolse kodebrekers en die sukses van die Enigma -masjien#8217) is dat die kodebrekers in GC & ampCS eers aan die einde van die oorlog 'n werklike SZ -masjien gesien het, maar dat hulle die Lorenz gebreek het kode vir twee en 'n half jaar.

John Tiltman was een van die beste kodebrekers in Bletchley Park en hy het veral belang gestel in hierdie versleutelde teleprinter -boodskappe. Hulle het die kodenaam gekry vis en die boodskappe wat, soos later uitgevind is, met die Lorenz -masjien geïnkripteer is, staan ​​bekend as tunny. Tiltman het geweet van die Vernam -stelsel en het hierdie boodskappe gou geïdentifiseer as op Vernam -manier gekodeer. Omdat die Vernam -stelsel afhang van die byvoeging van karakters, het Tiltman geredeneer: as die operateurs 'n fout gemaak het en dieselfde Lorenz -masjien begin vir twee boodskappe gebruik het, sou die verduisterende karakterreeks verdwyn deur die twee chiffertekste bymekaar te voeg. En die Britte het 'n bietjie vet geword - in Augustus 1941 het twee Duitse operateurs 'n ontsaglike fout begaan en dieselfde boodskap 2 keer gestuur (iets wat absoluut verbied is deur instruksies) en 'n slim Britse onderskeper het die twee boodskappe opgevang. Tiltman het die boodskappe gekry en daarin geslaag om vir die eerste keer albei tekste heeltemal te herstel. Dit was die deurbraak.

In die volgende twee maande het die afdeling Research in GC & ampCS die volledige logiese struktuur van die chiffermasjien uitgewerk. In die begin van 1942 het die Poskantoor -navorsingslaboratoriums op Dollis Hill is gevra om 'n implementering van die logika uit te voer wat deur kodebrekers uitgewerk is. Frank Morrell het 'n rek uniselectors en relais vervaardig, wat die logika navolg. Dit was genoem Tonnig. As die handmatige kodebrekers in die Testery dus die instellings wat vir 'n spesifieke boodskap gebruik is, moeisaam uitgewerk het, kan hierdie instellings aangeskakel word Tonnig en die teks lees in. As die kodebrekers dit reggekry het, kom Duits uit. Maar dit het vier tot ses weke geneem om die instellings uit te werk. Dit het beteken dat alhoewel hulle bewys het dat hulle tegnies tegnies kan breek TonnigTeen die tyd dat die boodskappe gedekodeer is, was die inligting daarin te oud om operasioneel bruikbaar te wees. Die kodebrekers het 'n vinniger masjien nodig gehad.

Die beroemde Engelse wiskundige Max Newman kom nou op die toneel. Hy het gedink dat dit moontlik sou wees om sekere dele van die vind van die instellings wat vir elke boodskap gebruik word, te outomatiseer met behulp van elektroniese toestelle. Hy het 'n spesifikasie van 'n masjien gemaak wat deur die ingenieurs op die Dollis Hill gebou is. Die logika is deur middel van relais gebou, maar die tellers is elektronies, ontwerp deur Charles Eryl Wynn-Williams (T. Flowers was ook betrokke). Die masjien is ontbied Heath Robinson na die tekenaarontwerper van fantastiese masjiene.

Heath Robinson is in Junie 1943 by GC & ampCS afgelewer. Die masjien vergelyk twee datastrome, wat deur middel van twee bandlesers ingevoer word. Eerste band bevat die onderskepte boodskap, tweede - waarskynlik gedecodeerde boodskap. Deur die twee bande deurlopend te vergelyk en die letters binnekort of later te verskuif, sal die boodskap gedekodeer word, en die resultaat sal op 'n tikmasjien gedruk word. Heath Robinson het egter 'n paar probleme opgelewer. Die optiese bandlesers het foute gegee as 'n lang stuk aangrensende gate of geen gate op die bande voorkom nie. Die grootste probleem was om die twee bande sinchronies te hou teen meer as 1000 karakters per sekonde. Selfs 'n geringe afwyking sou die hele proses waardeloos maak. Heath Robinson werk egter goed genoeg om aan te toon dat die konsep van Max Newman korrek was.

Newman is daarna na Dollis Hill, waar hy in aanraking gekom het met Thomas Flowers. Flowers was die briljante elektroniese ingenieur van die poskantoor wat ontwerp en gebou het Kolos om te voldoen aan die vereistes van Max Newman vir 'n masjien om die breek van die Lorenz -kode te bespoedig. Hy het reeds 'n paar advies gegee oor die bou van Heath Robinson. Die belangrikste bydrae van Flower was om voor te stel dat die wielpatrone elektronies in ringkringe gegenereer word, en sodoende een papierband wegneem en die sinchronisasieprobleem heeltemal uitskakel. Dit het 'n groot aantal elektroniese kleppe vereis, maar hy was vol vertroue dat dit aan die werk gesit kon word. Hy het, voor die oorlog, herhaalde poskantore met behulp van kleppe ontwerp. Hy het geweet dat kleppe betroubaar is, op voorwaarde dat dit nooit aan- en afgeskakel word nie. Niemand anders het hom geglo nie! Later sal Flowers sê: My voorstel, wat in Februarie 1943 gemaak is, het 'n groot skepsis gehad. Die eerste reaksie was dat 'n masjien met die aantal buise wat natuurlik nodig sou wees, te onbetroubaar sou wees om bruikbaar te wees. Gelukkig is hierdie kritiek verslaan deur die ervaring van die poskantoor met duisende buise in sy kommunikasienetwerk. Hierdie buise was nie onderhewig aan beweging of hantering nie, en die krag is nooit afgeskakel nie. Onder hierdie omstandighede was buismislukkings baie skaars. ”

Die Kolos van Bletchley Park in 1944

Kolos (later gebel Kolossus Mark I) ontwerp begin in Maart 1943. Teen Desember 1943 werk al die verskillende stroombane en word die kolos uitmekaar gehaal, na GC & ampCS gestuur en bymekaargemaak. Colossus gebruik die nuutste vakuumbuise (termioniese kleppe), tiratrone en fotomultiplikators om 'n papierband opties te lees en gebruik dan 'n programmeerbare logiese funksie op elke karakter, en tel hoe gereeld hierdie funksie teruggekeer het. Die rekenaar (sien die boonste foto) was in Januarie 1944 in werking en suksesvol op die eerste toets teen 'n ware versleutelde boodskapband. Colossus kon tot 5000 karakters per sekonde (cps) lees, terwyl die band ongeveer 50 km per uur daardeur beweeg, en verminder die tyd om Lorenz -boodskappe van weke na ure te breek en net betyds om boodskappe te ontsyfer wat het belangrike inligting aan Eisenhower en Montgomery gegee D dag. Hierdie ontsyferde Lorenz -boodskappe het getoon dat Hitler die misleidingsveldtogte ingesluk het, die spookleër in die suide van Engeland, die fantoomkonvooie wat oos langs die kanaal beweeg het, dat Hitler oortuig was dat die aanvalle oor die Pas de Calais kom en dat hy Panzer -afdelings in België. Na D dag die Franse verset en die Britse en Amerikaanse lugmag het al die telefoon- en teleprinter landlyne in Noord -Frankryk gebombardeer en bestraf, die Duitsers gedwing om radiokommunikasie te gebruik en skielik het die hoeveelheid onderskepte boodskappe geweldig gestyg.

In Junie 1944 is 'n verbeterde weergawe van Kolossus Mark I, gebel Markus II, en nog agt masjiene is vinnig gebou om die toename in boodskappe te hanteer. Die Mark I is opgegradeer na 'n Mark II, en daar was dus tien Mark II Kolosse teen die einde van die oorlog in die GC & ampCS. Teen die einde van die vyandelikhede is 63 miljoen karakters van Duitse boodskappe van hoë gehalte ontsyfer. Mark II bevat 2500 kleppe en 800 relais en kon tot 25000 cps (vyf keer vinniger as Mark I) lees, as gevolg van die kombinasie van 'n parallelle verwerking en buffergeheue (registers), en bevat 'n stroombaan om die program outomaties te verander wanneer 'n waarskynlike kodepatroon is ontdek.

Blokdiagram van Kolos

Elkeen van die tien Colossi het 'n groot kamer in Bletchley Park beset. Die rakke was 2,3 m hoog met verskillende breedtes. Daar was agt rakke in twee baaie van ongeveer 5,5 m lank, plus die papierbandleser en bandhanteerder. Die invoer van data was kode-teks, vasgemaak op 5-gats papierband met 'n snelheid van 5000 cps. Die afvoer is op aflosse gebuffer en op 'n tikmasjien gedruk. Die verwerker het 'n geheue van 5 karakters van 5-bisse, wat in 'n skofregister gehou is, logiese hekke wat verbind kan word en 20 dekades tellers wat as 5 by 4 dekades gerangskik is. Die kloksnelheid was 5 KHz, afgelei van kettingwielgate in die invoerband. Die programmering van die Colossus ’ kruiskorrelasie -algoritme is bereik deur 'n kombinasie van telefoonaansluitproppe, toue en skakelaars.

Na die oorwinningsdag was dit skielik verby. Agt van die tien Kolosse is in Bletchley Park afgebreek. Twee is na Londen en is omstreeks 1960 ontmantel en in dieselfde jaar is al die tekeninge van Kolossus verbrand, en die bestaan ​​daarvan is natuurlik geheim gehou. In die sewentigerjare het inligting begin verskyn oor Kolos. Professor Brian Randell van die Universiteit van Newcastle het begin ondersoek instel na die masjien. Dr Flowers en sommige van die ander ontwerpingenieurs het in die tagtigerjare referate geskryf waarin Kolossus in redelik algemene terme beskryf is.

Colossus was die eerste van die elektroniese digitale masjiene met programmeerbaarheid, hoewel beperk in moderne terme. Dit was egter nie 'n volledig algemene Turing-rekenaar nie, alhoewel Alan Turing op Bletchley Park gewerk het, en ook nie 'n gestoorde programrekenaar nie. Toe word nie besef dat Turing se volledigheid beduidend was nie, die meeste van die ander baanbrekende moderne rekenaarmasjiene was ook nie Turing voltooi nie (bv. Die Atanasoff. Berry Computer, die Harvard Mark I elektro-meganiese aflosmasjien, die Bell Labs aflosmasjiene (deur George Stibitz) et al), of die eerste ontwerpe van Konrad Zuse). Die idee van 'n rekenaar as 'n masjien vir algemene doeleindes, dit wil sê meer as 'n sakrekenaar wat toegewy is aan die oplossing van moeilike, maar spesifieke probleme, sal etlike jare lank nie prominent word nie.

Vanweë sy parallelle aard is Colossus baie vinnig, selfs volgens die standaarde van vandag. Die onderskepte boodskap wat op gewone tikmasjien se band vasgemaak word, word gelees teen 5000 karakters per sekonde. Die tandwielgate in die middel van die band word gelees om die horlosie vir die hele masjien te vorm. Dit vermy probleme met sinchronisasie, ongeag die snelheid van die band, wat die snelheid van Colossus is. Tommy Flowers het een keer die papierbandmotor gelos om te sien wat gebeur het. Teen 9600 karakters per sekonde het die band gebars en teen ongeveer 100 km / h deur die hele kamer gevlieg! Daar is besluit dat 5000 cps 'n veilige snelheid was. By 5000 cps is die interval tussen tandwielgate 200 mikrosekondes. In hierdie tyd sal Colossus tot 100 Boole -berekeninge gelyktydig op elk van die vyf bandkanale en oor 'n matriks van vyf karakters doen. Die poortvertragingstyd is 1,2 mikrosekondes, wat baie opmerklik is vir baie gewone kleppe. Dit demonstreer die ontwerpvaardighede van Tommy Flowers.

In 1994 begin 'n span onder leiding van Tony Sale met die heropbou van 'n Kolos in Bletchley Park. Toe die masjien (sien die boonste prentjie) in November 2007 gereed was om die projek voltooi te vier en om die begin van 'n geldinsamelingsinisiatief vir die The National Museum of Computing te begin, is 'n wedstryd gereël - die herboude Kolos teen radioamateurs wêreldwyd in die eerste plek om 3 boodskappe te ontvang en te dekodeer wat met die Lorenz SZ42 gekodeer is en vanaf die radiostasie DL0HNF in die Heinz Nixdorf Museums Forum -rekenaarmuseum gestuur is. Die uitdaging is maklik gewen deur radioamateur Joachim Schoth, wat hom deeglik voorberei het vir die geleentheid en sy eie seinverwerking en kode ontsyfer het met behulp van die rekenaartaal Ada. Die span van Colossus is belemmer deur hul begeerte om radiotoerusting uit die Tweede Wêreldoorlog te gebruik, wat hulle met 'n dag vertraag het weens swak ontvangs. Die 1,4 GHz -skootrekenaar met sy eie kode, het egter minder as 'n minuut geneem om die instellings vir al 12 wiele te vind. Die Duitse kodebreker het gesê:. My skootrekenaar verteer die teks met 'n snelheid van 1,2 miljoen karakters per sekonde - 240 keer vinniger as Colossus. As u die SVE -frekwensie met die faktor skaal, kry u 'n ekwivalente klok van 5,8 MHz vir Colossus. Dit is 'n merkwaardige snelheid vir 'n rekenaar wat in 1944 gebou is. ”

Die volledige geskiedenis van die Mac

Die Macintosh, of Mac, is 'n reeks persoonlike rekenaars wat vervaardig word deur Apple Inc. Die eerste Macintosh is op 24 Januarie 1984 deur Steve Jobs bekendgestel en dit was die eerste kommersieel suksesvolle persoonlike rekenaar met twee x02026 Hou aan lees


Hoe het Enigma -masjiene gewerk?

Net soos al die ander rotormasjiene het hierdie apparaat sowel elektriese as meganiese stelsels. Die meganiese deel van die stelsel het bestaan ​​uit rotors wat langs die spil gerangskik was, 'n sleutelbord en 'n trapkomponent wat een van die rotors gedraai het toe 'n sleutel ingedruk is en 'n reeks lampe vir al die letters.

Die masjien is gebruik om enige teksboodskap te enkripteer, en vir elke letter wat deur die operateur getik word, het die lamp 'n ander letter getoon volgens die pseudo-ewekansige vervanging. Die letters wat deur die ligte vertoon word, is opgeteken as die versleutelde plaasvervanger. As die sleutel ingedruk word, beweeg dit een van die rotors, sodat die volgende sleutel 'n ander elektriese pad gebruik, en 'n ander vervangende alfabet vir al die letters produseer. Die cyphertext word dan oorgedra na 'n ander operateur wat die boodskap ontsyfer. Solank die instellings van die ontsyferingstoerusting soos dié van die enkripsiemasjien lyk, kan die boodskap ontsyfer word.


Primêre bronne

(1) Suetonius, Die twaalf keisers (ongeveer 110 nC)

Daar is ook briewe van hom aan Cicero, sowel as aan sy intieme oor private aangeleenthede, en in laasgenoemde, as hy iets vertrouliks te sê het, skryf hy dit in kode, dit wil sê deur die volgorde van die briewe van die alfabet, sodat daar nie 'n woord gemaak kon word nie. As iemand dit wil ontsyfer en die betekenis daarvan verstaan, moet hy die
vierde letter van die alfabet, naamlik D, vir A, en so met die ander.

(2) Michael Paterson, Stemme van die kodebrekers (2007)

Toe sy eienaar in 1937 oorlede is, was Bletchley Park, op die platteland van Buckinghamshire, ongeveer 50 kilometer noordwes van Londen, 'n besonderse Victoriaanse landhuis. Dit was aan die einde van 'n rit en omring deur grasperke wat saggies na 'n siermeer gekantel het, na 1883 grootliks herbou toe dit deur die finansierder Sir Herbert Leon gekoop is. Die gevel van rooi baksteen spog met geen simmetrie of skoonheid nie: dit was 'n eklektiese samestelling van gewels, afskortings, skoorsteenstapels en ervensters-miskien 'n gepaste eksentrieke omgewing vir die rol wat dit binnekort sou speel. Daaragter was die gewone buitegeboue: stalle, motorhuise, was- en suiwelgeriewe, en die woonkamer van die bediende. Van geen historiese of argitektoniese belang nie, is dit deur 'n plaaslike bouer gekoop vir sloping en herontwikkeling.

Binne 'n jaar het die huis egter weer van eienaar verander. Die nuwe bewoner blyk 'n vloot- of militêre heer te wees, en hy word vergesel deur 'n groep wat beskryf word as "Captain Ridley's shooting party". Hierdie term stel voor dat 'n groep sportiewe hoërklasmanne op soek is na die plaaslike wild, maar geen skote is van die terrein gehoor nie. In die daaropvolgende jare sou die geluide van byna konstante konstruksie wees. Die geheimsinnige meneer sou byna tien jaar in besetting bly; hul getalle het toegeneem met meer as 10 000 meer mans en vroue, beide militêr en burgerlik, en dit sou nog 'n paar dekades duur voordat die plaaslike bevolking sou ontdek wat hulle daar gedoen het.

(3) Peter Calvocoressi, Top Secret Ultra (1980)

Die oorspronklike weergawe van die Enigma -masjien is in 1919 in Holland uitgevind en gepatenteer en is in die vroeë twintigerjare ontwikkel en bemark deur 'n Duitser wat die Nederlandse uitvinding met sy eie opgeneem het en die masjien sy naam gegee het. Dit was 'n kommersiële masjien wat almal kon koop. Patente is in verskillende lande, waaronder Brittanje, afgeneem en dit was oop vir inspeksie deur enigiemand wat weet waar om dit te soek en die nuuskierigheid gehad het.

Onder die kopers van hierdie kommersiële masjien was die Duitse gewapende dienste. Die Duitse vloot het reeds in 1918 daaraan gedink om 'n masjien vir sy kifers te vind en aan te pas, en in 1926 het hy 'n verbeterde weergawe van Enigma begin gebruik. Die weermag het drie jaar later sy voorbeeld gevolg, maar daar was nog geen lugmag nie, maar uiteindelik het die Luftwaffe ook Enigma gebruik, en die Duitse veiligheidsdienste (die polisie en SS) en ander dienste soos die spoorweë. Deur die jare het die Duitsers die masjien geleidelik verander en ingewikkeld en alles daaroor meer en meer geheim gehou. Die basiese veranderinge van die kommersiële na die geheime militêre model is teen 1930/31 voltooi, maar verdere operasieprosedures is voor en tydens die oorlog ingestel. Die Enigma -masjien sou verreweg die belangrikste hulpmiddel wees vir die Duitsers se strategiese slagveldkommunikasie tydens die Tweede Wêreldoorlog, alhoewel dit sou kon vervang as die oorlog baie langer sou aangegaan het as wat dit was.

(4) Anthony Cave Brown, Bodyguard of Lies (1976)

Lewinski het in 'n woonstel op die linkeroewer gewerk, en die masjien wat hy geskep het, was 'n vreugde van nabootsende ingenieurswese. Dit was ongeveer 24 sentimeter groot en 18 sentimeter hoog en was omhul in 'n houtkas. Dit was gekoppel aan twee elektriese tikmasjiene, en om 'n gewone taalsein in 'n teks te omskep, hoef die operateur net die sleutelbord te raadpleeg, die sleutel te kies vir die tyd van die dag, die dag van die maand, en die maand van die kwartaal, koppel daarvolgens aan en tik die sein op die tikmasjien aan die linkerkant. Elektriese impulse betree die komplekse bedrading van elk van die rotors van die masjien, die boodskap is geïnkripteer en dan na die regter tikmasjien oorgedra. Toe die versleutelde teks sy bestemming bereik, het 'n operateur die sleutels van 'n soortgelyke apparaat ingestel volgens 'n advies in die boodskap, die geëndeerde sein op die linkermasjien getik en die regtermasjien het die regte teks behoorlik afgelewer. Tot die koms van die masjienversleutelstelsel is die versleuteling stadig en versigtig met die hand gedoen. Enigma, soos Knox en Turing ontdek het, kon 'n byna oneindige aantal verskillende alfabette lewer deur slegs die sleutelprosedure te verander. Dit was, of so lyk dit, die uiteindelike geheime skryfmasjien. & Quot

(5) R. V. Jones, Mees geheime oorlog: Britse wetenskaplike intelligensie 1939-1945 (1978)

Dit was 'n baie vindingryke rangskikking van drie wiele, elk met 'n reeks studs aan elke kant, met elke stud aan die een kant wat deur 'n draad aan 'n pen aan die ander kant verbind is - die presiese rangskikking van die verbindings is een van die geheime van die masjien en die pen wat kontak maak met een van die studs op die volgende wiel. Die masjien het 'n tikmasjien -sleutelbord, en dit het eerder soos 'n siklometer gewerk: elke keer as die masjien gebruik word om 'n letter te kodeer, word een wiel met een spasie gedraai nadat hierdie wiel met genoeg spasies beweeg het om dit deur een omwenteling te draai, dit sal sy buurwiel met een spasie klik. Die wiele was dus nooit twee keer in dieselfde posisie nie. Die basiese kodering is bewerkstellig deur die deurloop van 'n elektriese stroom deur die studs, sodat wanneer 'n letter gekodeer word, die toepaslike sleutel op die sleutelbord gedruk word, en die gevolglike gekodeerde letter bepaal sal word deur die toepaslike geleidingspad deur die studs, die studs op een wiel maak geskikte kontak met die penne op die buurwiel. 'N Verdere tikkie vindingrykheid was om 'n omgekeerde rangskikking aan die rand van die derde wiel by te voeg, weer met knoppe wat onderling verbind was om die stroom deur 'n ander pad agteruit te stuur. Die terugkerende stroom steek 'n klein elektriese gloeilamp aan wat 'n spesifieke letter op 'n tweede sleutelbord verlig, en dui dus die versleutelde ekwivalent aan van die letter waarvan die sleutel oorspronklik ingedruk is. & Quot

(6) Peter Calvocoressi, Top Secret Ultra (1980)

Although its keyboard was simpler than a typewriter's, the Enigma machine was in all other respects much more complicated. Behind the keyboard the alphabet was repeated in another three rows and in the same order, but this time the letters were not on keys but in small round glass discs which were set in a flat rectangular plate and could light up one at a time. When the operator struck a key one of these letters lit up. But it was never the same letter. By striking P the operator might, for example, cause L to appear and next time he struck P he would get neither P nor L but something entirely different.

This operator called out the letters as they appeared in lights and a second operator sitting alongside him noted them down. This sequence was then transmitted by wireless in the usual Morse code and was picked up by whoever was supposed to be listening for it. It could also be picked up by an eavesdropper. The Germans experimented with a version of the machine which, by transmitting automatically as the message was encyphered, did away with the need for the second operator, but they never brought this version into use.

The legitimate recipient took the gobbledegook which had been transmitted to him and tapped it out on his machine. Provided he got the drill right the message turned itself back into German. The drill consisted in putting the parts of his machine in the same order as those of the sender's machine. This was no problem for him since he had a handbook or manual which told him what he had to do each day. In addition, the message which he had just received contained within itself the special key to that message.

The eavesdropper on the other hand had to work all this out for himself. Even assuming he had an Enigma machine in full working order it was no good to him unless he could discover how to arrange its parts - the gadgets which it had in addition to its keyboard. These were the mechanisms which caused L to appear when the operator struck P.

These parts or gadgets consisted of a set of wheels rotors and a set of plugs. Their purpose was not simply to turn P into L but to do so in so complex a manner that it was virtually impossible for an eavesdropper to find out what had gone on inside the machine in each case. It is quite easy to construct a machine that will always turn P into L, but it is then comparatively easy to find out that L always means P a simple substitution of this kind is inadequate for specially secret traffic.

The eavesdropper's basic task was to set his machine in exactly the same way as the legitimate recipient of the message had set his, since the eavesdropper would then be able to read the message with no more difficulty than the legitimate recipient. The more complex the machine and its internal workings, the more difficult and more time-consuming was it for the eavesdropper to solve this problem.

The Enigma machine fitted compactly into a wooden box which measured about 13 x 11 inches, and 6 inches high.
As the operator sat at his machine, he had in front of him, first, the rows of keys, then the spaces for the letters to appear illuminated, and beyond these again a covered recess to take three wheels or rotors. Each wheel was about three inches in diameter and had 26 points of entry and exit for the electric current which passed through them. The wheels were almost wholly embedded in the machine and edge-on to the operator. They were covered by a lid and when the lid was closed the operator could see only the tops of them, but he could rotate them by hand because each wheel had on one side a serrated edge which stuck up through the lid.

In addition to this serrated edge each wheel had, on its other side, a ring which could be moved independently of the wheel itself into any one of 26 positions round the wheel. Thus the wheel could be manipulated and so could the ring. Further, each wheel rotated automatically when the machine was in use - the right hand wheel at each touch of a key, the middle wheel after 26 touches, and the left hand wheel after 26 x 26.

Although only three wheels could be inserted into the machine at any one time, there were by 1939 five wheels issued with each machine. Die operateur moes drie van hierdie stel van vyf gebruik. Hy moes die regte drie kies en dit dan in 'n voorgeskrewe volgorde plaas. This was crucial because the wheels, although outwardly identical, were differently wired inside.

(7) Rules of Bletchley Park (September, 1939)

No mention whatsoever may be made either in conversation or correspondence regarding the nature of your work. It is expressly forbidden to bring cameras etc. within the precincts of Bletchley Park (Official Secrets Act).

DO NOT TALK AT MEALS. There are the waitresses and others who may not be in the know regarding your own particular work.

DO NOT TALK TO THE TRANSPORT. There are the drivers who should not be in the know.

DO NOT TALK TRAVELLING. Indiscretions have been overheard on Bletchley platform. They do not grow less serious further off.

DO NOT TALK IN THE BILLET. Why expect your hosts who are not pledged to secrecy to be more discreet than you, who are?

DO NOT TALK BY YOUR OWN FIRESIDE, whether here or on leave. If you are indiscreet and tell your own folks, they may see no reason why they should not do likewise. They are not in a position to know the consequences and have received no guidance. Moreover, if one day invasion came, as it perfectly well may, Nazi brutality might stop at nothing to wring from those that you care for, secrets that you would give anything, then, to have saved them from knowing. Their only safety will lie in utter ignorance of your work.

BE CAREFUL EVEN IN YOUR HUT. Cleaners and maintenance staff have ears, and are human.

(8) Nigel Cawthorne, The Enigma Man (2014)

The first bombe, named Victory, arrived at Bletchley Park on 18 March 1940. It cost £6,500, one-tenth of the price of a Lancaster bomber and around £100,000 today. It was also some 300,000 times faster than Rejewski's machine. But already Turing was working on plans to make a machine that was faster still.

(9) Cynthia Waterhouse, interviewed by Michael Paterson, for his book, Stemme van die kodebrekers (2007)

The intricate deciphering machines were known as bombes. These unravelled the wheel settings for the Enigma ciphers thought by the Germans to be unbreakable. They were cabinets about eight feet tall and seven feet wide. The front housed rows of coloured circular drums each about five inches in diameter and three inches deep. Inside each was a mass of wire brushes, every one of which had to be meticulously adjusted with tweezers to ensure that the circuits did not short. The letters of the alphabet were painted round the outside of each drum. The back of the machine almost defies description - a mass of dangling plugs on rows of letters and numbers.

We were given a menu which was a complicated drawing of numbers and letters from which we plugged up the back of the machine and set the drums on the front. The menus had a variety of cover names - e.g. silver drums were used for shark and porpoise menus for naval traffic, and phoenix, an army key associated with tank battles at the time of El Alamein.

We only knew the subject of the key and never the contents of the messages. It was quite heavy work and now we understood why we were all of good height and eyesight, as the work had to be done at top speed and 100% accuracy was essential. Die bombes made a considerable noise as the drums revolved, and would suddenly stop, and a reading was taken. If the letters matched the menus, the Enigma wheel-setting had been found for that particular key. To make it more difficult the Germans changed the setting every day. The reading was phoned through to the Controller at Bletchley Park where the complete messages were deciphered and translated. The good news would be a call back to say "Job up, strip machine."

(8) John Cairncross, The Enigma Spy (1996)

I was posted to the secret and vital operation of deciphering signals of foreign military forces carried out at the Government Code & Cipher School (GC&CS), which had moved shortly before the war from the SIS headquarters in London to the small town of Bletchley, some sixty miles on the main railway line to the north, where it was safely hidden from German bombers. The school itself would not have aroused suspicion, set in the grounds of a hideous nineteenth-century Victorian mansion, which would serve as its administrative headquarters. But if one looked through the high steel fence which guarded the compound from intruders, one could see a cluster of dingy prefabricated huts of the type normally found in army camps. It was in these unimpressive structures that the most important technical breakthrough of the Second World War took place: the cracking of the ENIGMA cipher machine, a model of which had been provided to the British by a courageous group of Polish cryptographers who had been working for the Germans. Yet the final breakthrough was due to the skill and tenacity of British experts.

The staff at Bletchley Park, but mainly its cryptographers and other technicians, was a mixed group, chaotically assembled during the early years of the war. They were not the typical product of the older universities, where the cult and cultivation of social polish and homogeneity were mostly prized above scientific and commercial ingenuity. Churchill himself made the point with his usual pungent humour, in a rapid visit to the GC&CS in 1941, when he commented to Commander (Sir) Edward Travis, the Director: "I know I told you to leave no stone unturned to find the necessary staff, but I didn't mean you to take me literally." But these were the experts who produced solutions of genius for the nation's wartime problems by developing an even more ingenious device than the ENIGMA machine itself. This machine, designed by the mathematical genius Alan Turing, was a forerunner of the modern computer and reduced the laborious process of examining the infinite possibilities of interpretation to manageable proportions. The culmination of these efforts was that the unintelligible texts transmitted by the Germans in cipher could be "unscrambled" and restored to their original text. This was not a once and for all battle, but a struggle to meet a constant challenge, since it was possible for the settings of the ENIGMA machine to be endlessly changed by the Germans but the British technicians rose to the challenge. (We linguists only rarely caught a glimpse of the difficulties encountered by the technical side in the decipherment of the signals, which called for a different sort of mind.)

The linguists were more typical of an Oxbridge educational background and were later recruited in greater numbers in order to process the fruit of the progress made by the technicians. As fluency in German was a very scarce commodity in England, I was automatically assigned to ENIGMA when I was called up. I suppose my position as Private Secretary to Lord Hankey had been a sufficient guarantee of reliability, and I was taken on by the GC&CS and not even subjected to any interrogation.

After a short training in simple (non-machine) codes at nearby Bedford, which never proved useful, I was sent to Bletchley and put to work. We lived a semi-monastic life, which was only broken by the occasional visit to London to recuperate. There was a direct train to London, so that travel back to my flat there on my day off was not a problem. I had no car at the time and indeed not even a driving licence, but GC&CS was within walking distance of the railway station. Weekends were unheard of since the operational work was non-stop. Social functions too were virtually ruled out by working conditions and there were no common rooms. The rigid separation of the different units made contact with other staff members almost impossible, so I never got to know anyone apart from my direct operational colleagues. We did eight fully-occupied hours of work and then were transported back to our respective lodgings with families in the surrounding villages.

Even within my hut, I never met some of the more important personalities, such as Peter Calvocoressi, who wrote a book on his experiences at Bletchley. Except for the work and the routine, I remember very little of what happened there during my twelve months' service. My territory was limited to my hut and to the functional and austere cafeteria, which could hardly be described as having a relaxed and inviting atmosphere.

When I discovered the nature of the work I was to be engaged in, I was proud to take part in this superb achievement of British brains, and was soon fascinated with the job itself. Few of us were military experts or had any knowledge of the details of the fighting, so our satisfaction was with the work itself. I found the editing of the German decrypts much like solving a crossword puzzle, or amending a corrupt text of a classical writer such as Moliere. My work involved the correction and restoration of words blurred, distorted or omitted. This was a task which needed a generous dose of imagination, and a corkscrew mind.

The translators/editors operated in groups of six, including a team leader. The German ENIGMA (ULTRA SECRET) decrypts came in rolls of paper three or four feet long, each roll containing some ten signals. The leader's task was to decide whether the signals were worth processing (as was rarely the case), to check out if translations were accurate, and to make sure that no information was overlooked which had a tactical or organisational significance. For instance, at the beginning of my new career, I overlooked the implications of a particular phrase containing a reference to a German Luftwaffe unit in Yugoslavia, which could have been identified by relating this passage to a previous signal received two days earlier. There was another instance later on in which a passage did not seem to make sense, no matter how hard I racked my brains trying out various solutions. It turned out that two signals had been run together, and that this crucial factor had been overlooked by the expert attached to the cryptographic section.

The team leader had to ascribe a fictitious source for each signal and ensure that it was plausible, for the translation was careful never to give the slightest hint of the real origin of the document. The kind of source ascribed, for example, would be a mythical British agent such as an officer in the German Army High Command (OKW). Our product was known as the "sanitised" version of ULTRA SECRET and was the one supplied to all recipients, including the War Office.

I had been greeted on my first day at Bletchley by the receiving officer who explained to me the billeting system and informed me about other practical matters such as transportation to and from work. He emphasised the utterly secret nature of the decipherment operations and the need for complete secrecy in all our work, since, if the Germans suspected that Britain was reading ENIGMA, they would change the cipher and we would take a long time, if ever, to break into it again. We might even lose the war as a result. He ended the interview with the striking, if casual, announcement that we had not confided our ENIGMA triumph to the Russians "because we do not trust them". They were, he implied, a security risk.

This offhand announcement shook me and set my mind racing. I had arrived at Bletchley with the determination to sever my connection with the KGB. I felt certain that the Government, and Churchill in particular, would not have excluded the Russians from this important source of intelligence without the I had been greeted on my first day at Bletchley by the receiving officer who explained to me the billeting system and informed me about other practical matters such as transportation to and from work. He emphasised the utterly secret nature of the decipherment operations and the need for complete secrecy in all our work, since, if the Germans suspected that Britain was reading ENIGMA, they would change the cipher and we would take a long time, if ever, to break into it again. We might even lose the war as a result. He ended the interview with the striking, if casual, announcement that we had not confided our ENIGMA triumph to the Russians "because we do not trust them". They were, he implied, a security risk.

There were two most probable grounds for the ban. I speculated and feared that even if the Allies won the war, their basic differences would, in the not-too-far-distant future, lead to the parting of ways. Even now relations were far from perfect. I recall Churchill's Private Secretary, John Colville, telling me that his master had once confided in him that there was no limit to the deceptiveness of the Russians. The Molotov-Ribbentrop Pact may have been thrust aside for the moment, just as the long list of Stalin's horrors was tactfully overlooked, but they could not be extinguished or forgotten. The other consideration was a technical but vital one. The Germans might now or later crack the Russian military cipher, and in that case, since the Russians would be making the most of ENIGMA information in their traffic, the Germans would soon be aware that their own cipher had been read.

(9) Alan Turing, Gordon Welchman, Hugh Alexander, and Stuart Milner-Barry, letter to Winston Churchill (21st October, 1941)

Some weeks ago you paid us the honour of a visit, and we believe that you regard our work as important. You will have seen that, thanks largely to the energy and foresight of Commander Travis, we have been well supplied with the 'bombes' for the breaking of the German Enigma codes. We think, however, that you ought to know that this work is being held up, and in some cases is not being done at all, principally because we cannot get sufficient staff to deal with it. Our reason for writing to you direct is that for months we have done everything that we possibly can through the normal channels, and that we despair of any early improvement without your intervention.

We have written this letter entirely on our own initiative. We do not know who or what is responsible for our difficulties, and most emphatically we do not want to be taken as criticising Commander Travis who has all along done his utmost to help us in every possible way. But if we are to do our job as well as it could and should be done it is absolutely vital that our wants, small as they are, should be promptly attended to. We have felt that we should be failing in our duty if we did not draw your attention to the facts and to the effects which they are having and must continue to have on our work, unless immediate action is taken.


May 9, 1941: German Sub Caught With the Goods

To revist this article, visit My Profile, then View saved stories.

To revist this article, visit My Profile, then View saved stories.

1941: British destroyers capture a German submarine, U-110, south of Iceland. The British remove a naval version of the highly secret cipher machine known to the Allies as Enigma, and then they let the boat sink – to keep the fact of their boarding secret.

The Enigma machine, used by the Kriegsmarine to encode and decode messages passing between shore command and ships at sea, was taken to Bletchley Park in England. There, cryptographers including computer pioneer Alan Turing succeeded in breaking the naval code.

The Germans, assuming U-110 had foundered with her secrets intact, failed to realize that their code was broken. The subsequent information passing before British eyes helped the Allies enormously in the Battle of the Atlantic.

Several versions of the Enigma machine existed, but the working principle – a rotor system activated using a keyboard – was the same. The machine itself had been around since the early 1920s and was used by other nations, too, although it is most closely associated with Nazi Germany.

The Enigma used by the German army was decrypted as early as 1932 by Polish cryptographers, who later passed their methodology along to the British and French. In light of subsequent events (the Germans drove a Franco-British expeditionary force out of Norway and then crushed the French in a six-week campaign in 1940), the military value of this early intelligence is debatable.

But breaking the German naval code, made possible in large part by the recovery of U-110's machine, provided the British with a leg up at a time when the war at sea was very much in doubt.

The capture of a U-boat on the high seas was a rare and considerable achievement, because submarine crews scuttled their boats rather than let them fall into enemy hands. In this case, the U-boat’s commander, Kapitänleutnant Fritz Julius Lemp, thinking he was going to be rammed by an oncoming destroyer, ordered his crew to abandon ship. (His precise order, according to one survivor, was "Last stop. Everybody off.") Seeing the Germans leaving the boat, the British commander managed to veer away and avoid a collision.

Lemp, already in the water when he realized his boat wasn't going to be rammed, was swimming back to U-110 to scuttle her when he was either shot by the British (according to the Germans) or simply disappeared (according to the British).

Three other U-boats were captured at sea during the war, most notably the U-505, surprised by an American task force off the African coast in June 1944. That boat is on permanent display at the Museum of Science and Industry in Chicago.

Pop culture footnote: The thoroughly mediocre movie, U-571, was loosely based – very loosely based – on the capture of U-110. It was also shot through with historical inaccuracies, but that's a subject for another time and place.

Source: Uboat.net, Wikipedia

Photo: The German navy used the Enigma machine in World War II to send and receive coded messages between shore command and ships at sea. Note the keyboard layout, which differs somewhat from the modern German QWERTZ keyboard. (cormac70/Flickr)


The Plug Board

The final component that we need to be fully compatible with a real German army Enigma machine is the plug board. The German military added this when they adapted the commercial version of the Enigma machine for their own use, and it improves the security a lot. Twenty-six sockets on the front of the machine (one for each letter) can connect together in pairs with jumper cables. If a letter has no connection to it, it passes through unchanged. Any two letters connected together swap with each other before being passed through the machine and then swap back again for output. There were different numbers of connections used at different times, but the later standard was ten.

To represent this in our model, we need to write in the jumpered letters on our input/output cylinder. If you use a pencil, you can rub them out afterwards and reuse the cylinder (it helps if you used matte-finish sticky tape, as that's easy to write on and rub out). For each letter that is jumpered, write the paired letter in next to it. For example, if D and Q are paired, write D next to Q, and Q next to D. Do this for all the jumpered pairs, and then for the rest of the letters which have no plugs in, write the letter next to itself.

The enciphering and deciphering process is the same as before, except you start tracing the line from where you wrote the letter from your message, and you read off the letter you wrote at the place where you finish tracing the line.

To try this out, write in the plug board settings for these 10 pairs:

AP BR CM FZ GJ IL NT OV QS WX

Using rotors I, II and III with ring settings 10, 14 and 21 from our previous example and message key V Q Q decipher the following:

H A B H V  H L Y D F  N A D Z Y

Your result should be four English words and your rotors should finish at positions V R F.


Enigma Machine Emulator

The enigma machine was used in World War II to encrypt secret messages.

One of the key objectives for the Allies during WWII was to find a way to break the code to be able to decrypt German communications. A team of Polish cryptanalysts was the first to break Enigma codes as early as 1932, however the German used more advanced Enigma machines making it virtually impossible to break the Enigma code using traditional methods. In 1939 with the prospect of war, the Poles decided to share their findings with the British. Dilly Knox, one of the former British World War I Codebreakers, set up an Enigma Research Section at Bletchley Park, England. He worked alongside Tony Kendrick, Peter Twinn, Alan Turing and Gordon Welchman. Together they developed a complex machine called the Bomb used to workout Enigma settings from intercepted German communications. The first wartime Enigma messages were broken in January 1940. Being able to decrypt German messages gave the Allies valuable information which has had a major impact on the outcomes of WWII.

To gain a better understanding of the encryption techniques used by the enigma machine we have decided to recreate a virtual Enigma machine/emulator.

You will be able to use this machine to both encrypt or decrypt enigma messages (Enigma encryption is symmetric, which means that the same settings can be used to both encrypt or decrypt a message).

Our Enigma machine emulator is replicating the encryption process of the Enigma M3 series that was used by the German Navy (Kriegsmarine). It is fitted with a UKW-B reflector. Later on through the war, it was replaced by the M4 series which included a 4throtor.

Before pressing any keys on the keyboard section of the machine you will need to apply the required settings. To do so you will need to click on the rotors to adjust the wheels initial settings and then make the required connections by clicking on the different plugs (bottom section of the machine) to connect letters from the plugboard.


Kyk die video: Rusty Cooley talks Buckethead, Yngwie, Shawn Lane u0026 more NatterNet Interview